Accession ID: MIRT005630 [miRNA, hsa-miR-19a-3p :: SMAD4, target gene]
pre-miRNA Information
pre-miRNA ID hsa-mir-19aLinkOut: [miRBase ]
Synonyms MIRN19A, hsa-mir-19a, miR-19a, miRNA19A, MIR19A
Description Homo sapiens miR-19a stem-loop
Comment This sequence maps to chromosome 13 and is named miR-19a precursor-13 in reference .
2nd Structure of pre-miRNA
Disease
Mature miRNA Information
Mature miRNA hsa-miR-19a-3p
Mature Sequence 49| UGUGCAAAUCUAUGCAAAACUGA |71
Evidence Experimental
Experiments Cloned
Putative hsa-miR-19a-3p Targets LinkOut: [ TargetScanS 5.1 | MicroCosm | microRNA.org | miRecords | miRDB | miRo | miRNAMap 2.0 ]
Gene Information
Gene Symbol SMAD4 LinkOut: [ Entrez Gene | BioGPS | Wikipedia | iHop ]
Synonyms DPC4, JIP, MADH4
Description SMAD family member 4
Transcript NM_0053    LinkOut: [ RefSeq ]
Expression LinkOut: [ BioGPS ]
Putative miRNA Targets on SMAD4 LinkOut: [ TargetScan 5.1 | MicroCosm | miRNAMap 2.0 ]
3'UTR of SMAD4
(miRNA target sites are highlighted)
>SMAD4|NM_0053|3'UTR
   1 CCTTTAGACTGAGGTCTTTTACCGTTGGGGCCCTTAACCTTATCAGGATGGTGGACTACAAAATACAATCCTGTTTATAA
  81 TCTGAAGATATATTTCACTTTTGTTCTGCTTTATCTTTTCATAAAGGGTTGAAAATGTGTTTGCTGCCTTGCTCCTAGCA
 161 GACAGAAACTGGATTAAAACAATTTTTTTTTTCCTCTTCAGAACTTGTCAGGCATGGCTCAGAGCTTGAAGATTAGGAGA
 241 AACACATTCTTATTAATTCTTCACCTGTTATGTATGAAGGAATCATTCCAGTGCTAGAAAATTTAGCCCTTTAAAACGTC
 321 TTAGAGCCTTTTATCTGCAGAACATCGATATGTATATCATTCTACAGAATAATCCAGTATTGCTGATTTTAAAGGCAGAG
 401 AAGTTCTCAAAGTTAATTCACCTATGTTATTTTGTGTACAAGTTGTTATTGTTGAACATACTTCAAAAATAATGTGCCAT
 481 GTGGGTGAGTTAATTTTACCAAGAGTAACTTTACTCTGTGTTTAAAAAGTAAGTTAATAATGTATTGTAATCTTTCATCC
 561 AAAATATTTTTTGCAAGTTATATTAGTGAAGATGGTTTCAATTCAGATTGTCTTGCAACTTCAGTTTTATTTTTGCCAAG
 641 GCAAAAAACTCTTAATCTGTGTGTATATTGAGAATCCCTTAAAATTACCAGACAAAAAAATTTAAAATTACGTTTGTTAT
 721 TCCTAGTGGATGACTGTTGATGAAGTATACTTTTCCCCTGTTAAACAGTAGTTGTATTCTTCTGTATTTCTAGGCACAAG
 801 GTTGGTTGCTAAGAAGCCTATAAGAGGAATTTCTTTTCCTTCATTCATAGGGAAAGGTTTTGTATTTTTTAAAACACTAA
 881 AAGCAGCGTCACTCTACCTAATGTCTCACTGTTCTGCAAAGGTGGCAATGCTTAAACTAAATAATGAATAAACTGAATAT
 961 TTTGGAAACTGCTAAATTCTATGTTAAATACTGTGCAGAATAATGGAAACATTACAGTTCATAATAGGTAGTTTGGATAT
1041 TTTTGTACTTGATTTGATGTGACTTTTTTTGGTATAATGTTTAAATCATGTATGTTATGATATTGTTTAAAATTCAGTTT
1121 TTGTATCTTGGGGCAAGACTGCAAACTTTTTTATATCTTTTGGTTATTCTAAGCCCTTTGCCATCAATGATCATATCAAT
1201 TGGCAGTGACTTTGTATAGAGAATTTAAGTAGAAAAGTTGCAGATGTATTGACTGTACCACAGACACAATATGTATGCTT
1281 TTTACCTAGCTGGTAGCATAAATAAAACTGAATCTCAACATACAAAGTTGAATTCTAGGTTTGATTTTTAAGATTTTTTT
1361 TTTCTTTTGCACTTTTGAGTCCAATCTCAGTGATGAGGTACCTTCTACTAAATGACAGGCAACAGCCAGTTCTATTGGGC
1441 AGCTTTGTTTTTTTCCCTCACACTCTACCGGGACTTCCCCATGGACATTGTGTATCATGTGTAGAGTTGGTTTTTTTTTT
1521 TTTTAATTTTTATTTTACTATAGCAGAAATAGACCTGATTATCTACAAGATGATAAATAGATTGTCTACAGGATAAATAG
1601 TATGAAATAAAATCAAGGATTATCTTTCAGATGTGTTTACTTTTGCCTGGAGAACTTTTAGCTATAGAAACACTTGTGTG
1681 ATGATAGTCCTCCTTATATCACCTGGAATGAACACAGCTTCTACTGCCTTGCTCAGAAGGTCTTTTAAATAGACCATCCT
1761 AGAAACCACTGAGTTTGCTTATTTCTGTGATTTAAACATAGATCTTGATCCAAGCTACATGACTTTTGTCTTTAAATAAC
1841 TTATCTACCACCTCATTTGTACTCTTGATTACTTACAAATTCTTTCAGTAAACACCTAATTTTCTTCTGTAAAAGTTTGG
1921 TGATTTAAGTTTTATTGGCAGTTTTATAAAAAGACATCTTCTCTAGAAATTGCTAACTTTAGGTCCATTTTACTGTGAAT
2001 GAGGAATAGGAGTGAGTTTTAGAATAACAGATTTTTAAAAATCCAGATGATTTGATTAAAACCTTAATCATACATTGACA
2081 TAATTCATTGCTTCTTTTTTTTGAGATATGGAGTCTTGCTGTGTTGCCCAGGCAGGAGTGCAGTGGTATGATCTCAGCTC
2161 ACTGCAACCTCTGCCTCCCGGGTTCAACTGATTCTCCTGCCTCAGCCTCCCTGGTAGCTAGGATTACAGGTGCCCGCCAC
2241 CATGCCTGGCTAACTTTTGTAGTTTTAGTAGAGACGGGGTTTTGCCTGTTGGCCAGGCTGGTCTTGAACTCCTGACCTCA
2321 AGTGATCCATCCACCTTGGCCTCCCAAAGTGCTGGGATTACGGGCGTGAGCCACTGTCCCTGGCCTCATTGTTCCCTTTT
2401 CTACTTTAAGGAAAGTTTTCATGTTTAATCATCTGGGGAAAGTATGTGAAAAATATTTGTTAAGAAGTATCTCTTTGGAG
2481 CCAAGCCACCTGTCTTGGTTTCTTTCTACTAAGAGCCATAAAGTATAGAAATACTTCTAGTTGTTAAGTGCTTATATTTG
2561 TACCTAGATTTAGTCACACGCTTTTGAGAAAACATCTAGTATGTTATGATCAGCTATTCCTGAGAGCTTGGTTGTTAATC
2641 TATATTTCTATTTCTTAGTGGTAGTCATCTTTGATGAATAAGACTAAAGATTCTCACAGGTTTAAAATTTTATGTCTACT
2721 TTAAGGGTAAAATTATGAGGTTATGGTTCTGGGTGGGTTTTCTCTAGCTAATTCATATCTCAAAGAGTCTCAAAATGTTG
2801 AATTTCAGTGCAAGCTGAATGAGAGATGAGCCATGTACACCCACCGTAAGACCTCATTCCATGTTTGTCCAGTGCCTTTC
2881 AGTGCATTATCAAAGGGAATCCTTCATGGTGTTGCCTTTATTTTCCGGGGAGTAGATCGTGGGATATAGTCTATCTCATT
2961 TTTAATAGTTTACCGCCCCTGGTATACAAAGATAATGACAATAAATCACTGCCATATAACCTTGCTTTTTCCAGAAACAT
3041 GGCTGTTTTGTATTGCTGTAACCACTAAATAGGTTGCCTATACCATTCCTCCTGTGAACAGTGCAGATTTACAGGTTGCA
3121 TGGTCTGGCTTAAGGAGAGCCATACTTGAGACATGTGAGTAAACTGAACTCATATTAGCTGTGCTGCATTTCAGACTTAA
3201 AATCCATTTTTGTGGGGCAGGGTGTGGTGTGTAAAGGGGGGTGTTTGTAATACAAGTTGAAGGCAAAATAAAATGTCCTG
3281 TCTCCCAGATGATATACATCTTATTATTTTTAAAGTTTATTGCTAATTGTAGGAAGGTGAGTTGCAGGTATCTTTGACTA
3361 TGGTCATCTGGGGAAGGAAAATTTTACATTTTACTATTAATGCTCCTTAAGTGTCTATGGAGGTTAAAGAATAAAATGGT
3441 AAATGTTTCTGTGCCTGGTTTGATGGTAACTGGTTAATAGTTACTCACCATTTTATGCAGAGTCACATTAGTTCACACCC
3521 TTTCTGAGAGCCTTTTGGGAGAAGCAGTTTTATTCTCTGAGTGGAACAGAGTTCTTTTTGTTGATAATTTCTAGTTTGCT
3601 CCCTTCGTTATTGCCAACTTTACTGGCATTTTATTTAATGATAGCAGATTGGGAAAATGGCAAATTTAGGTTACGGAGGT
3681 AAATGAGTATATGAAAGCAATTACCTCTAAAGCCAGTTAACAATTATTTTGTAGGTGGGGTACACTCAGCTTAAAGTAAT
3761 GCATTTTTTTTTCCCGTAAAGGCAGAATCCATCTTGTTGCAGATAGCTATCTAAATAATCTCATATCCTCTTTTGCAAAG
3841 ACTACAGAGAATAGGCTATGACAATCTTGTTCAAGCCTTTCCATTTTTTTCCCTGATAACTAAGTAATTTCTTTGAACAT
3921 ACCAAGAAGTATGTAAAAAGTCCATGGCCTTATTCATCCACAAAGTGGCATCCTAGGCCCAGCCTTATCCCTAGCAGTTG
4001 TCCCAGTGCTGCTAGGTTGCTTATCTTGTTTATCTGGAATCACTGTGGAGTGAAATTTTCCACATCATCCAGAATTGCCT
4081 TATTTAAGAAGTAAAACGTTTTAATTTTTAGCCTTTTTTTGGTGGAGTTATTTAATATGTATATCAGAGGATATACTAGA
4161 TGGTAACATTTCTTTCTGTGCTTGGCTATCTTTGTGGACTTCAGGGGCTTCTAAAACAGACAGGACTGTGTTGCCTTTAC
4241 TAAATGGTCTGAGACAGCTATGGTTTTGAATTTTTAGTTTTTTTTTTTTAACCCACTTCCCCTCCTGGTCTCTTCCCTCT
4321 CTGATAATTACCATTCATATGTGAGTGTTAGTGTGCCTCCTTTTAGCATTTTCTTCTTCTCTTTCTGATTCTTCATTTCT
4401 GACTGCCTAGGCAAGGAAACCAGATAACCAAACTTACTAGAACGTTCTTTAAAACACAAGTACAAACTCTGGGACAGGAC
4481 CCAAGACACTTTCCTGTGAAGTGCTGAAAAAGACCTCATTGTATTGGCATTTGATATCAGTTTGATGTAGCTTAGAGTGC
4561 TTCCTGATTCTTGCTGAGTTTCAGGTAGTTGAGATAGAGAGAAGTGAGTCATATTCATATTTTCCCCCTTAGAATAATAT
4641 TTTGAAAGGTTTCATTGCTTCCACTTGAATGCTGCTCTTACAAAAACTGGGGTTACAAGGGTTACTAAATTAGCATCAGT
4721 AGCCAGAGGCAATACCGTTGTCTGGAGGACACCAGCAAACAACACACAACAAAGCAAAACAAACCTTGGGAAACTAAGGC
4801 CATTTGTTTTGTTTTGGTGTCCCCTTTGAAGCCCTGCCTTCTGGCCTTACTCCTGTACAGATATTTTTGACCTATAGGTG
4881 CCTTTATGAGAATTGAGGGTCTGACATCCTGCCCCAAGGAGTAGCTAAAGTAATTGCTAGTGTTTTCAGGGATTTTAACA
4961 TCAGACTGGAATGAATGAATGAAACTTTTTGTCCTTTTTTTTTCTGTTTTTTTTTTTCTAATGTAGTAAGGACTAAGGAA
5041 AACCTTTGGTGAAGACAATCATTTCTCTCTGTTGATGTGGATACTTTTCACACCGTTTATTTAAATGCTTTCTCAATAGG
5121 TCCAGAGCCAGTGTTCTTGTTCAACCTGAAAGTAATGGCTCTGGGTTGGGCCAGACAGTTGCACTCTCTAGTTTGCCCTC
5201 TGCCACAAATTTGATGTGTGACCTTTGGGCAAGTCATTTATCTTCTCTGGGCCTTAGTTGCCTCATCTGTAAAATGAGGG
5281 AGTTGGAGTAGATTAATTATTCCAGCTCTGAAATTCTAAGTGACCTTGGCTACCTTGCAGCAGTTTTGGATTTCTTCCTT
5361 ATCTTTGTTCTGCTGTTTGAGGGGGCTTTTTACTTATTTCCATGTTATTCAAAGGAGACTAGGCTTGATATTTTATTACT
5441 GTTCTTTTATGGACAAAAGGTTACATAGTATGCCCTTAAGACTTAATTTTAACCAAAGGCCTAGCACCACCTTAGGGGCT
5521 GCAATAAACACTTAACGCGCGTGCGCACGCGCGCGCGCACACACACACACACACACACACACACACACAGGTCAGAGTTT
5601 AAGGCTTTCGAGTCATGACATTCTAGCTTTTGAATTGCGTGCACACACACACGCACGCACACACTCTGGTCAGAGTTTAT
5681 TAAGGCTTTCGAGTCATGACATTATAGCTTTTGAGTTGGTGTGTGTGACACCACCCTCCTAAGTGGTGTGTGCTTGTAAT
5761 TTTTTTTTTCAGTGAAAATGGATTGAAAACCTGTTGTTAATGCTTAGTGATATTATGCTCAAAACAAGGAAATTCCCTTG
5841 AACCGTGTCAATTAAACTGGTTTATATGACTCAAGAAAACAATACCAGTAGATGATTATTAACTTTATTCTTGGCTCTTT
5921 TTAGGTCCATTTTGATTAAGTGACTTTTGGCTGGATCATTCAGAGCTCTCTTCTAGCCTACCCTTGGATGAGTACAATTA
6001 ATGAAATTCATATTTTCAAGGACCTGGGAGCCTTCCTTGGGGCTGGGTTGAGGGTGGGGGGTTGGGGAGTCCTGGTAGAG
6081 GCCAGCTTTGTGGTAGCTGGAGAGGAAGGGATGAAACCAGCTGCTGTTGCAAAGGCTGCTTGTCATTGATAGAAGGACTC
6161 ACGGGCTTGGATTGATTAAGACTAAACATGGAGTTGGCAAACTTTCTTCAAGTATTGAGTTCTGTTCAATGCATTGGACA
6241 TGTGATTTAAGGGAAAAGTGTGAATGCTTATAGATGATGAAAACCTGGTGGGCTGCAGAGCCCAGTTTAGAAGAAGTGAG
6321 TTGGGGGTTGGGGACAGATTTGGTGGTGGTATTTCCCAACTGTTTCCTCCCCTAAATTCAGAGGAATGCAGCTATGCCAG
6401 AAGCCAGAGAAGAGCCACTCGTAGCTTCTGCTTTGGGGACAACTGGTCAGTTGAAAGTCCCAGGAGTTCCTTTGTGGCTT
6481 TCTGTATACTTTTGCCTGGTTAAAGTCTGTGGCTAAAAAATAGTCGAACCTTTCTTGAGAACTCTGTAACAAAGTATGTT
6561 TTTGATTAAAAGAGAAAGCCAACTAAAAAAAAAAAAAAAAAAAA
Target sites Provided by authors  Predicted by miRanda
miRNA-target interactions (Predicted by miRanda)
IDDuplex structurePositionScoreMFE
1
miRNA  3' agUCAAAACGUAUCUAAACGUGu 5'
            | |||| : |   ||||||| 
Target 5' agATTTTTTTTTTCTTTTGCACt 3'
1351 - 1373 153.00 -5.60
2
miRNA  3' agUCAAAACGUAUCUAAACGUGu 5'
            || |||| |||  ||||:|| 
Target 5' gtAG-TTTGGATATTTTTGTACt 3'
1028 - 1049 152.00 -12.40
3
miRNA  3' agUCA--AA---ACGUAUCUAAACGUGu 5'
            |||  ||   ||| || |||||:|| 
Target 5' ctAGTTGTTAAGTGCTTATATTTGTACc 3'
2537 - 2564 151.00 -10.50
Experimental Support 1 for Functional miRNA-Target Interaction
miRNA:Target hsa-miR-19a-3p :: SMAD4    [ Functional MTI ]
Validation Method Other
Article - Tsai, Z. Y. Singh, S. Yu, S. L. Kao, L. P. et al.
- J Cell Biochem, 2010
Human embryonic stem (hES) cells have the capacities to propagate for extended periods and to differentiate into cell types from all three germ layers both in vitro and in vivo. These characteristics of self-renewal and pluripotency enable hES cells having the potential to provide an unlimited supply of different cell types for tissue replacement, drug screening, and functional genomics studies. The hES-T3 cells with normal female karyotype cultured on either mouse embryonic fibroblasts (MEF) in hES medium (containing 4 ng/ml bFGF) (T3MF) or feeder-free Matrigel in MEF-conditioned medium (supplemented with additional 4 ng/ml bFGF) (T3CM) were found to express very similar profiles of mRNAs and microRNAs, indicating that the unlimited self-renewal and pluripotency of hES cells can be maintained by continuing culture on these two conditions. However, the expression profiles, especially microRNAs, of the hES-T3 cells cultured on Matrigel in hES medium supplemented with 4 ng/ml bFGF and 5 ng/ml activin A (T3BA) were found to be different from those of T3MF and T3CM cells. In T3BA cells, four hES cell-specific microRNAs miR-372, miR-302d, miR-367, and miR-200c, as well as three other microRNAs miR-199a, miR-19a, and miR-217, were found to be up-regulated, whereas five miRNAs miR-19b, miR-221, miR-222, let-7b, and let-7c were down-regulated by activin A. Thirteen abundantly differentially expressed mRNAs, including NR4A2, ERBB4, CXCR4, PCDH9, TMEFF2, CD24, and COX6A1 genes, targeted by seven over-expressed miRNAs were identified by inverse expression levels of these seven microRNAs to their target mRNAs in T3BA and T3CM cells. The NR4A2, ERBB4, and CXCR4 target genes were further found to be regulated by EGF and/or TNF. The 50 abundantly differentially expressed genes targeted by five under-expressed miRNAs were also identified. The abundantly expressed mRNAs in T3BA and T3CM cells were also analyzed for the network and signaling pathways, and roles of activin A in cell proliferation and differentiation were found. These findings will help elucidate the complex signaling network which maintains the self-renewal and pluripotency of hES cells.
LinkOut: [PMID: 19885849]
Experimental Support 2 for Non-Functional miRNA-Target Interaction
miRNA:Target hsa-miR-19a-3p :: SMAD4    [ Non-Functional MTI ]
Validation Method Luciferase reporter assay , Microarray
Conditions DLD1
Location of target site 3'UTR
Tools used in this research TargetScan
Original Description (Extracted from the article) ... Interestingly, all miR-17a~92 mimics tested decreased Smad4 mRNA levels, but this downregulation was most profound with miR-18a (Fig. 4C). In the human Smad4 3′-UTR, TargetScan predicts binding sites for miR-17 and miR-19 as well as miR-18a. To determine whether any of these were bona fide target sites, we constructed six sets of psiCHECK2-based sensor plasmids as described above. DLD1 Dicer hypo cells were transfected with these constructs and also control or cognate mimics. The results in Fig. 4D show that of the three sequences tested, only the miR-18a homology region is a bona fide binding site. ...

- Dews, M. Fox, J. L. Hultine, S. Sundaram, et al., 2010, Cancer Res.

Article - Dews, M. Fox, J. L. Hultine, S. Sundaram, et al.
- Cancer Res, 2010
c-Myc stimulates angiogenesis in tumors through mechanisms that remain incompletely understood. Recent work indicates that c-Myc upregulates the miR-17 approximately 92 microRNA cluster and downregulates the angiogenesis inhibitor thrombospondin-1, along with other members of the thrombospondin type 1 repeat superfamily. Here, we show that downregulation of the thrombospondin type 1 repeat protein clusterin in cells overexpressing c-Myc and miR-17 approximately 92 promotes angiogenesis and tumor growth. However, clusterin downregulation by miR-17 approximately 92 is indirect. It occurs as a result of reduced transforming growth factor-beta (TGFbeta) signaling caused by targeting of several regulatory components in this signaling pathway. Specifically, miR-17-5p and miR-20 reduce the expression of the type II TGFbeta receptor and miR-18 limits the expression of Smad4. Supporting these results, in human cancer cell lines, levels of the miR-17 approximately 92 primary transcript MIR17HG negatively correlate with those of many TGFbeta-induced genes that are not direct targets of miR-17 approximately 92 (e.g., clusterin and angiopoietin-like 4). Furthermore, enforced expression of miR-17 approximately 92 in MIR17HG(low) cell lines (e.g., glioblastoma) results in impaired gene activation by TGFbeta. Together, our results define a pathway in which c-Myc activation of miR-17 approximately 92 attenuates the TGFbeta signaling pathway to shut down clusterin expression, thereby stimulating angiogenesis and tumor cell growth.
LinkOut: [PMID: 20940405]
MiRNA-Target Expression Profile:

 
MiRNA-Target Interaction Network:
Strong evidence (reporter assay, western blot, qRT-PCR or qPCR)
Other evidence
39 hsa-miR-19a-3p Target Genes:
ID Target Description Validation methods
Strong evidence Less strong evidence
MIRT001794 HOXA5 homeobox A5 2 2
MIRT001795 MECP2 methyl CpG binding protein 2 (Rett syndrome) 3 2
MIRT002958 PTEN phosphatase and tensin homolog 4 5
MIRT003214 ESR1 estrogen receptor 1 4 2
MIRT003426 CCND1 cyclin D1 5 3
MIRT003533 ERBB4 v-erb-a erythroblastic leukemia viral oncogene homolog 4 (avian) 3 3
MIRT003536 NR4A2 nuclear receptor subfamily 4, group A, member 2 3 3
MIRT003781 ATXN1 ataxin 1 4 3
MIRT004334 KAT2B K(lysine) acetyltransferase 2B 3 2
MIRT004337 SOCS1 suppressor of cytokine signaling 1 3 3
MIRT004350 PRMT5 protein arginine methyltransferase 5 2 2
MIRT004452 BCL2L11 BCL2-like 11 (apoptosis facilitator) 2 5
MIRT004593 TGFBR2 transforming growth factor, beta receptor II (70/80kDa) 3 3
MIRT004934 BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) 4 3
MIRT005396 ARIH2 ariadne homolog 2 (Drosophila) 2 2
MIRT005630 SMAD4 SMAD family member 4 3 2
MIRT006179 KIT v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog 4 1
MIRT006475 CUL5 cullin 5 2 1
MIRT006646 TLR2 toll-like receptor 2 3 1
MIRT006787 TNF tumor necrosis factor 1 1
MIRT007118 SUZ12 suppressor of zeste 12 homolog (Drosophila) 1 1
MIRT007119 RAB13 RAB13, member RAS oncogene family 1 1
MIRT007120 MSMO1 sterol-C4-methyl oxidase-like 1 1
MIRT007121 ABCA1 ATP-binding cassette, sub-family A (ABC1), member 1 1 1
MIRT007122 PSAP prosaposin 1 1
MIRT031304 THBS1 thrombospondin 1 1 1
MIRT031305 CTGF connective tissue growth factor 1 1
MIRT031306 DPYSL2 dihydropyrimidinase-like 2 1 1
MIRT031307 VPS4B vacuolar protein sorting 4 homolog B (S. cerevisiae) 1 1
MIRT031308 MYCN v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (avian) 1 1
MIRT031309 RAB14 RAB14, member RAS oncogene family 1 1
MIRT050641 KDELR2 KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 2 1 1
MIRT050642 RNF4 ring finger protein 4 1 1
MIRT050643 PRRC2C HLA-B associated transcript 2-like 2 1 1
MIRT050644 TMEM87A transmembrane protein 87A 1 1
MIRT050645 MTF2 metal response element binding transcription factor 2 1 1
MIRT050646 GRK6 G protein-coupled receptor kinase 6 1 1
MIRT050647 RPS6KA5 ribosomal protein S6 kinase, 90kDa, polypeptide 5 1 1
MIRT050648 WDFY3 WD repeat and FYVE domain containing 3 1 1